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Previously
● PhD from INRIA (Grenoble)
● Postdoc ETH Zürich

Assistant professor at EURECOM
● Since 2011

Eurecom
● Petite école d’ingénieurs a Sophia Antipolis
● Membre de l’institut mines-télécom

2/3 d’étudiants étrangers

A un nouveau diplôme cette année
● Diplôme d’ingénieur de spécialisation (CTI)
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Embedded Systems Security

This is a very wide topic, what we will see 
today
● Basics in embedded systems security, 
hardware attacks

● Example of an embedded system software 
compromise

● How to analyze such systems
● Example of static and dynamic analysis
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RFID

Sensors

SmartCards Connected devices

Industrial 
systems

Embedded devices diversity
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Devices that are designed for a security application
● Well defined purpose, often custom 
● Limited attack surface
● High level of security achievable
● Not (too) cost sensitive, volume production

55

There are security devices 
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 We know how to do security for a while…

6

There are security devices 
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Those embedded devices are everywhere
● Not security devices, security not their main 

purpose
● Often COTS devices

Sometimes availability and/or safety is 
important 

● But often no real need for security
● Lack of a clearly identified adversary
● Resistant to random faults 
● Attacker will trigger improbable conditions

There are 'just' devices 
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Your computer  is made of many 
“computers”

All of them are considered to be in our TCB.
What could happen when one is compromised?

Keyboard 
controller

Network card

Hard-drive

CPU microcode

Northbridge 
chipset

GPU
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Internet of what ?
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A single match for “security”
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Is there really a problem with 
security in IoT?
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 Video Protection

Before IoT
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 Video Protection Surveillance

Before IoT
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IoT: composition
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Composition kills

Slide Courtesy of T. Goodspeed
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What happened?
● Attack surface increased
● Devices not designed for security now online
● Threat model changed
● Value increased just by being online
● Deploy and forget

We just “I”-ified a camera



Challenges



Challenges

Embedded devices not immune anymore to 
compromise

● Security devices are rather secure
● But we rely on non security devices for our daily 

security and privacy

But embedded devices are obscure, hidden 
● You know the OS you are running on your 

server/laptop and if it is up to date
● But when was the last update of your “fridge’s” 

OS?



Challenges

Networking/wireless interfaces are increasing the 
attack surface

● IoT=> IoIT?  Is it the Internet of the Insecure 
Things ?

● Remote, software attacks become possible

In general difficult to know the runtime status of a 
device

Sophisticated attacks previously demonstrated
● Hundreds of thousands of devices compromised
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Good design 
● Security Development Lifecycle (SDL) 
● Hardening devices 

Raise public awareness
● Evaluate the impact of compromises

Develop tools and techniques to improve security 
evaluation at low cost

So what can we do about this ? 



Making devices more robust
Hardware hardening 



Different possible attacks

Simple hardware attacks are very simple!

● Identify the chips on the device
● Search for the datasheets of the chips
● Trace the PCB, connections between the devices
● Identify the purpose of each chip on the device
● Find jtag, serial, i2c … 
● Dump memories, (serial flash !)
● Try to obtain the software, access internal secrets, execute 

code...





Probing bus, following vias

● Needles and a 
multimeter to follow 
the vias

● Alternative, desolder 
all components and 
take picture

● For more see Joe 
Grand woot'14 paper

Picture T. Goodspeed



Bus pirate

● Once a port is found 
we need to read it

● An universal device 
for talking many 
simple protocols 



Jtagulator

● Automate detection 
of JTAG or serial 
ports 

 



Goodfet

● Similar to buspirate 
● Initially designed to be a 

cheap JTAG
● Supports many protocols, 

flash memories…
● Easily extensible firmware
● Cheap PCB available! 
● Good to learn



Many other more advanced 
devices

● Good oscilloscope
● Logic analyzers
● ...
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Soldering skills help
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Simple countermeasures

Hardware countermeasures 

● Obfuscate labels
● Bury important traces into deep layers
● Use BGA (harder to tap and desolder)
● Epoxy on top of chips
● Don't connect JTAG, serial or debug ports
● Use chips with internal memories 
● Encrypt memory bus
● ...
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Attacking the hardware

When an attacker can access the hardware a lot of things can 
be done

● Digging secrets in hardware
● Tampering internal signals and memories
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Attacking the hardware directly

Picture T. Goodspeed
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Decaping chips

Picture T. Goodspeed
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ROM memory form an MSP430

Picture T. Goodspeed
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ROM memory form an MSP430

Picture T. Goodspeed



Other attacks

● Fault attacks
● Make some logic fail, e.g., interpret 
incorrectly CPU instructions 

● Very efficient attacks

● Most common are 
● Clock, voltage Glitching
● Laser fault
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Functionnal chip

Picture T. Goodspeed
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Probing

Picture T. Goodspeed
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Hardware Countermeasures

● Mesh of wires 
above the logic
– Tamper detection

● Light sensors
● Internal clock
● Glitch detection
● Etc…

Picture T. Goodspeed
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Picture: "Fib" by english User:Cm the p - English version. Licensed under CC BY-SA 3.0 via Wikimedia 
Commons - https://commons.wikimedia.org/wiki/File:Fib.jpg#mediaviewer/File:Fib.jpg

Hardware attacks cont.
(a.k.a. bazooka)

● A Focused Ion 
Beam can be used 
to modify a chip

● This is very powerful
● Quite expensive 

equipment
● What is the right 

level of security for 
the device ? 



Hardware attacks 
countermeasures

● Additional metal layers
● Side channel/fault resistance

● This is smartcard level security
● Very few embedded devices have this level 
of protection

● Has a cost



Good design 
● Security Development Lifecycle (SDL) 
● Hardening devices 

Raise public awareness
● Evaluate the impact of compromises

Develop tools and techniques to improve security 
evaluation at low cost

So what can we do about this ? 



 

Example of a software attack
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Implementation and Implications of
a Stealth Hard-Drive Backdoor

ACSAC 2013 (Best Student Paper Award)

Jonas Zaddach
Davide Balzarotti
Aurélien Francillon 

Erik-Oliver Blass

Travis Goodspeed
Moitrayee Gupta 

Anil Kurmus
Ioannis Koltsidas
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Goals
● It's about threat models !

● Do we care about “hardware” compromises ?
● Is it practical, feasible ?

● An example attack would be to
● Understand, then backdoor the firmware 
● Malware compromises OS
● Updates HDD with malicious firmware update
● Disk is formatted, OS “re-installed”
● But malicious HDD firmware remains!
● OS  compromised again from on the next boot 
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Disk platters

Head 
& Actuators

Controller SATA interface

M/S pins
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Reverse engineering approach

49

Study PCB 
● Chips : DRAM, Serial flash, JTAG (deactivated?), 

motor controller
● Google model ! Data recovery services.

Firmware updates available but format obscure
A serial diagnostic menu is available from M/S pins

● Gives PEEK/POKE primitives 
● Allows to dump memory/load code

A serial Flash is on PCB
● Contains 2nd bootloader
● Could be desoldered/dumped/changed



Reverse engineering approach tools

● Main task is to understand the firmware 
● But it's very large and obscure...
● We need a way to debug the running firmware
● To hook the backdoor in the original code

● Ida pro, a lot of patience, 
● Custom tools, dynamic analysis

50
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Device instrumentation
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Architecture
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Backdoor Implementation

Many technical difficulties...
● Custom, event based OS 
● Large statically linked code, no symbols

Results:
● Backdoor inserted in a firmware update
● Intercepts disk writes
● Can read blocks from disk (unstable*)
● No significant overhead (1%)

53
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Exfiltration exemple: an online forum 

54

Web forum 
comments

Web data 
User data stored comments 
System data (passwords)

Backdoor installed:
 While shipping the disk 
 By malware
…
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Example: Exfiltrating a sensitive file

Use HDD as remote block device
● We can request any block
● So we can “mount” partitions

Exfiltrate /etc/shadow in nine “queries”:
● First retrieve partition table in MBR
● Then superblock of ext3 partition
● …

Total time: < 1 minute

55
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In summary

We reverse engineered and backdoored a 
COTS drive

● 10 person-month effort
● Without any privileged information
● No significant performance overhead

Data-exfiltration backdoor
● No cooperation from host
● Stealthy

So is this a realistic threat model after all ? 
● IRATEMONK

56
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IRATEMONK (12/2013) ?

2/23/15 - - p 57 
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Internship? (1/2015)

2/23/15 - - p 58 
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First malware sample found by 
Kaspersky (2/2015)

2/23/15 - - p 59 
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NSA approach to backdooring 
Disks

From public documents we know that: 
● Compromise a computer 
● A DLL loads a modified firmware image
● The firmware replaces the MBR by a 
modified MBR

● Most likely then use this to infect the boot 
chain
● Not very stealth ! 
● Could be detected by a TPM ? 
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Snowden documents on “interdiction”
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What can we do about this ?



Good design 
● Security Development Lifecycle (SDL) 
● Hardening devices 

Raise public awareness
● Evaluate the impact of compromises

Develop tools and techniques to improve security 
evaluation at low cost

So what can we do about this ? 
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2 main ways to analyze embedded systems:
 Static analysis 
 Dynamic Analysis

We consider only black (or grey) box analysis
 Also realistic for manufacturers, audits,…

Performing analysis of embedded 
systems
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AVATAR: A Framework for Dynamic Security Analysis of 
Embedded Systems’ Firmwares

Presented at NDSS ‘14 

Jonas Zaddach,

Luca Bruno, Aurélien Francillon, Davide 
Balzarotti
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Problem:
● Unknown peripherals
● Emulating CPU only not sufficient
● Limited visibility with execution on hardware

● With a gdb stub, JTAG...

Advanced analysis impossible
● Tracing, Tainting, Symbolic execution

Dynamic analysis
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Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5
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Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Trace

1: x = 4
3: x = 4

1

32

4 5

Trace

1: x = 4

1

32

4 5

1

32

4 5

Trace

1: x = 4
3: x = 4
4: x = 6

Tools for security evaluation

Collecting an execution trace
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1

32

4 5

Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Testcase A
x = 4

A

Testcase A
x = 4

Testcase B
x = 2

B

Testing with random input
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Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X=<input>
Y=0
Z=0 

X
Y
Z

tainted

Y=X+Y
Z=23

Data flow tracking 
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Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X = σ 

X ≤ 3
X > 3 

X > 
7  

3 < X ≤ 
7

X = 2

X = 4 X = 9

Multipath exploration
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Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

● Integrated tools
● IDA Pro
● GDB
● Eclipse
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Avatar

Avatar idea :
● Arbitration framework
● Emulate the firmware on the emulator 

● Forward IO to deivce
● Python scripting of all tools (qemu, jtag, symbolic 

execution…)
● A process, helps for reverse engineering at the 

same time as automating many tasks and testing

● Open source, with examples:
http://s3.eurecom.fr/tools/avatar/

http://s3.eurecom.fr/tools/avatar/
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Avatar simplified principle
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Avatar simplified principle
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Avatar simplified principle
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Avatar simplified principle
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Avatar simplified principle
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Avatar simplified principle
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Avatar simplified principle
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Use cases

Analyzing the ROM 
bootloader of an HDD

Finding bugs in a Zigbee 
wireless sensor device 

Analyzing the baseband 
code of a GSM feature 
phone



  82

Dynamic analysis is great, but 
does not scale. 

How can we analyze such 
systems at a large scale ?
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 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure 
Embedded Systems
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 Routers
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 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure 
Embedded Systems
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 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure 
Embedded Systems

Problem:
 Those are individual, manual, tedious efforts
 How to do this at large scale?
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 Heterogeneity of
◦Hardware, architectures, OSes, users, requirements, 

security goals
 Manual analysis does not scale, it requires

◦Finding and downloading the firmwares
◦Unpacking and performing initial analysis
◦ (Re-)discovering the same or similar bugs in other 

firmwares

The problem with large scale 
analysis
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1.Collect a large number of firmware images
2.Perform broad but simple static analysis
3.Correlate across firmwares

Many advantages:
● No intrusive online testing, no devices involved
● Scalable
But also many challenges

Our approach

« A Large Scale Analysis of the Security of Embedded Firmwares »
Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide Balzarotti 
USENIX Security 2015
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● Firmware identification (.exe/.ps/...)
● Firmware Unpacking 
● Representative dataset
● Scalability, computational limits
● Results confirmation

Challenges
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Challenge:
Firmware Identification

Clearly a Firmware 
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Challenge:
Firmware Identification

Clearly a Firmware Clearly not a Firmware 
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Clearly a Firmware Clearly not a Firmware 

Uncertain

Challenge:
Firmware Identification
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● E.g., upgrade by printing a PS document

Challenge:
Firmware Identification
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Challenge:
Unpacking & Custom Formats

● How to reliably unpack and learn formats?

● E.g., vendor provides a .ZIP 'firmware package'

– .ZIP→.EXE+.PS
● .EXE→self-extracting archive

– Extract more or not?
– Turns out to contain a printer driver inside

● .PS→ASCII85 stream→ELF file that could be:
– A complete embedded system software
– An executable performing the firmware upgrade
– A firmware patch

● Often, a firmware image→just 'data' binary blob
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Architecture
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Architecture
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Architecture
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Architecture
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 759 K total files collected

 172 K filtered files (firmware candidates)

 32 K firmwares analyzed

 26 K firmwares unpacked (fully or partially)

 1.7 M files after unpacking

Unpacking

Filter non firmware

Random selection

Unpack attempt

Files extraction
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OS in our dataset

63 %ARM, 7 % Mips, 
86 % Linux 7 % VxWorks/Nucleus RTOS/Windows CE



  103

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1
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 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1
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 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

Firmware 2 

Firmware 3 

95%

99%

0%
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 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

Firmware 2 

Firmware 3 

95%

99%

0%
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RSA Keys 

 SSL keys correlation
vulnerability propagation
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RSA Keys 

 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable 
devices online 
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RSA Keys 

 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable 
devices online 
 Not all the same 
brand
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RSA Keys 

 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable 
devices online 
 Not all the same 
brand
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 Replacing wires by
wireless in a system
 Lack of security
 Anyone can control 
the fireworks

 Fortunately firmware 
updates possible and now
deployed

Another example of composition failure: 
Fireworks!

Costin et al. ACM Wisec 2014
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www.firmware.RE (beta)
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 38 new vulnerabilities (CVE)

 Correlated them to 140 K vulnerable online 
devices

 Affected 693 firmware files by at least one 
vulnerability

See our Usenix Security 2014 paper 

Results: Summary
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 Rather simple analysis so far

 We are now working on 
● Doing smarter analysis on this dataset
● Improving the dataset

Next steps



Take away message



Few of the principles from Saltzer and 
Schroeder (a.k.a. the basics):

● Economy of Mechanism (“KISS”)
● Fail-safe defaults
● Open design
● Separation of privilege
● Least privilege
● Psychological acceptability

Saltzer and Schroeder 
(1975)



● Forget things like “It will never be attacked 
because it is:
● Stripped, binary only 
● Firmware is not on the Internet
● Hardware is not documented
● We disabled JTAG
● …

Wrong Assumptions



● Updates with old software (release/compilation 
date)

● Default passwords
● SSL private keys 
● SSH keys (authorized_keys)
● Debug access a.k.a. backdoors...
● Web vulnerabilities
● Building Images as root
● Packaging Outdated and Vulnerable Software

Frequently found problems in 
firmware



● Plan for updates automated and secure
● Clean default passwords, keys
● Implement countermeasures (NX/Canaries/ASLR...)
● Secure boot, signed updates
● (contradictory) Please don't lock the user out!

● Obfuscating firmware
● Remove strings, strip symbols
● Make firmware hard to obtain (encrypted)
● Careful key management
● Make it hard to analyze hardware

Defending / obfuscation (by far 
not an exhaustive list!)
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Security is hard
● Costs money, Time, manpower

Features are selling points
● More Features, more attack surface and less security

Less features, higher cost, latter 
● market failure ?

Long term v.s. short term thinking

Security Trade-off

Today?

Security
Cost 
Features 
Convenience
…

Tomorrow?
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A lot of poorly secured devices produced
● But bad cases more visible

Security is hard and expensive, we  need 
● Public/customer awareness 
● Security Standards?
● Independent security audit
● Automated Firmware updates!

Diverse and powerful adversaries 
No such thing as total security

● But there should be a minimal level of security

Conclusion
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Some of our projects

Avatar Project :
● http://s3.eurecom.fr/tools/avatar/
Firmware.re:
● http://www.firmware.re/

Our publications can be found here :
http://www.s3.eurecom.fr/publications.html

http://s3.eurecom.fr/tools/avatar/
http://www.firmware.re/
http://www.s3.eurecom.fr/publications.html


Questions ?

Some of the people working on this:

Jonas Zadach

Andrei Costin Davide Balzarotti

Luca Bruno


