
Embedded Systems
Security

Aurélien Francillon

Secappdev
Feb 2015

23.02.15 2

Aurélien Francillon
@aurelsec

To skip this advertisement, click here [x]

Previously
● PhD from INRIA (Grenoble)
● Postdoc ETH Zürich

Assistant professor at EURECOM
● Since 2011

Eurecom
● Petite école d’ingénieurs a Sophia Antipolis
● Membre de l’institut mines-télécom

2/3 d’étudiants étrangers

A un nouveau diplôme cette année
● Diplôme d’ingénieur de spécialisation (CTI)

 3

Embedded Systems Security

This is a very wide topic, what we will see
today
● Basics in embedded systems security,
hardware attacks

● Example of an embedded system software
compromise

● How to analyze such systems
● Example of static and dynamic analysis

 4

RFID

Sensors

SmartCards Connected devices

Industrial
systems

Embedded devices diversity

 5

Devices that are designed for a security application
● Well defined purpose, often custom
● Limited attack surface
● High level of security achievable
● Not (too) cost sensitive, volume production

55

There are security devices

 6

 We know how to do security for a while…

6

There are security devices

 7

Those embedded devices are everywhere
● Not security devices, security not their main

purpose
● Often COTS devices

Sometimes availability and/or safety is
important

● But often no real need for security
● Lack of a clearly identified adversary
● Resistant to random faults
● Attacker will trigger improbable conditions

There are 'just' devices

 8

Your computer is made of many
“computers”

All of them are considered to be in our TCB.
What could happen when one is compromised?

Keyboard
controller

Network card

Hard-drive

CPU microcode

Northbridge
chipset

GPU

 9

Internet of what ?

 10

 11

A single match for “security”

 12

Is there really a problem with
security in IoT?

 13

 Video Protection

Before IoT

 14

 Video Protection Surveillance

Before IoT

 15

IoT: composition

 16Session Title 2

Composition kills

Slide Courtesy of T. Goodspeed

 17

 18

What happened?
● Attack surface increased
● Devices not designed for security now online
● Threat model changed
● Value increased just by being online
● Deploy and forget

We just “I”-ified a camera

Challenges

Challenges

Embedded devices not immune anymore to
compromise

● Security devices are rather secure
● But we rely on non security devices for our daily

security and privacy

But embedded devices are obscure, hidden
● You know the OS you are running on your

server/laptop and if it is up to date
● But when was the last update of your “fridge’s”

OS?

Challenges

Networking/wireless interfaces are increasing the
attack surface

● IoT=> IoIT? Is it the Internet of the Insecure
Things ?

● Remote, software attacks become possible

In general difficult to know the runtime status of a
device

Sophisticated attacks previously demonstrated
● Hundreds of thousands of devices compromised

 22

Good design
● Security Development Lifecycle (SDL)
● Hardening devices

Raise public awareness
● Evaluate the impact of compromises

Develop tools and techniques to improve security
evaluation at low cost

So what can we do about this ?

Making devices more robust
Hardware hardening

Different possible attacks

Simple hardware attacks are very simple!

● Identify the chips on the device
● Search for the datasheets of the chips
● Trace the PCB, connections between the devices
● Identify the purpose of each chip on the device
● Find jtag, serial, i2c …
● Dump memories, (serial flash !)
● Try to obtain the software, access internal secrets, execute

code...

Probing bus, following vias

● Needles and a
multimeter to follow
the vias

● Alternative, desolder
all components and
take picture

● For more see Joe
Grand woot'14 paper

Picture T. Goodspeed

Bus pirate

● Once a port is found
we need to read it

● An universal device
for talking many
simple protocols

Jtagulator

● Automate detection
of JTAG or serial
ports

Goodfet

● Similar to buspirate
● Initially designed to be a

cheap JTAG
● Supports many protocols,

flash memories…
● Easily extensible firmware
● Cheap PCB available!
● Good to learn

Many other more advanced
devices

● Good oscilloscope
● Logic analyzers
● ...

 31

Soldering skills help

 32

Simple countermeasures

Hardware countermeasures

● Obfuscate labels
● Bury important traces into deep layers
● Use BGA (harder to tap and desolder)
● Epoxy on top of chips
● Don't connect JTAG, serial or debug ports
● Use chips with internal memories
● Encrypt memory bus
● ...

 33

Attacking the hardware

When an attacker can access the hardware a lot of things can
be done

● Digging secrets in hardware
● Tampering internal signals and memories

 34

Attacking the hardware directly

Picture T. Goodspeed

 35

Decaping chips

Picture T. Goodspeed

 36

ROM memory form an MSP430

Picture T. Goodspeed

 37

ROM memory form an MSP430

Picture T. Goodspeed

Other attacks

● Fault attacks
● Make some logic fail, e.g., interpret
incorrectly CPU instructions

● Very efficient attacks

● Most common are
● Clock, voltage Glitching
● Laser fault

 39

Functionnal chip

Picture T. Goodspeed

 40

Probing

Picture T. Goodspeed

 41

Hardware Countermeasures

● Mesh of wires
above the logic
– Tamper detection

● Light sensors
● Internal clock
● Glitch detection
● Etc…

Picture T. Goodspeed

 42
Picture: "Fib" by english User:Cm the p - English version. Licensed under CC BY-SA 3.0 via Wikimedia
Commons - https://commons.wikimedia.org/wiki/File:Fib.jpg#mediaviewer/File:Fib.jpg

Hardware attacks cont.
(a.k.a. bazooka)

● A Focused Ion
Beam can be used
to modify a chip

● This is very powerful
● Quite expensive

equipment
● What is the right

level of security for
the device ?

Hardware attacks
countermeasures

● Additional metal layers
● Side channel/fault resistance

● This is smartcard level security
● Very few embedded devices have this level
of protection

● Has a cost

Good design
● Security Development Lifecycle (SDL)
● Hardening devices

Raise public awareness
● Evaluate the impact of compromises

Develop tools and techniques to improve security
evaluation at low cost

So what can we do about this ?

Example of a software attack

 46

Implementation and Implications of
a Stealth Hard-Drive Backdoor

ACSAC 2013 (Best Student Paper Award)

Jonas Zaddach
Davide Balzarotti
Aurélien Francillon

Erik-Oliver Blass

Travis Goodspeed
Moitrayee Gupta

Anil Kurmus
Ioannis Koltsidas

 47

Goals
● It's about threat models !

● Do we care about “hardware” compromises ?
● Is it practical, feasible ?

● An example attack would be to
● Understand, then backdoor the firmware
● Malware compromises OS
● Updates HDD with malicious firmware update
● Disk is formatted, OS “re-installed”
● But malicious HDD firmware remains!
● OS compromised again from on the next boot

 48

Disk platters

Head
& Actuators

Controller SATA interface

M/S pins

 49

Reverse engineering approach

49

Study PCB
● Chips : DRAM, Serial flash, JTAG (deactivated?),

motor controller
● Google model ! Data recovery services.

Firmware updates available but format obscure
A serial diagnostic menu is available from M/S pins

● Gives PEEK/POKE primitives
● Allows to dump memory/load code

A serial Flash is on PCB
● Contains 2nd bootloader
● Could be desoldered/dumped/changed

Reverse engineering approach tools

● Main task is to understand the firmware
● But it's very large and obscure...
● We need a way to debug the running firmware
● To hook the backdoor in the original code

● Ida pro, a lot of patience,
● Custom tools, dynamic analysis

50

 51

Device instrumentation

 52

Architecture

 53

Backdoor Implementation

Many technical difficulties...
● Custom, event based OS
● Large statically linked code, no symbols

Results:
● Backdoor inserted in a firmware update
● Intercepts disk writes
● Can read blocks from disk (unstable*)
● No significant overhead (1%)

53

 54

Exfiltration exemple: an online forum

54

Web forum
comments

Web data
User data stored comments
System data (passwords)

Backdoor installed:
 While shipping the disk
 By malware
…

 55

Example: Exfiltrating a sensitive file

Use HDD as remote block device
● We can request any block
● So we can “mount” partitions

Exfiltrate /etc/shadow in nine “queries”:
● First retrieve partition table in MBR
● Then superblock of ext3 partition
● …

Total time: < 1 minute

55

 56

In summary

We reverse engineered and backdoored a
COTS drive

● 10 person-month effort
● Without any privileged information
● No significant performance overhead

Data-exfiltration backdoor
● No cooperation from host
● Stealthy

So is this a realistic threat model after all ?
● IRATEMONK

56

 57

IRATEMONK (12/2013) ?

2/23/15 - - p 57

 58

Internship? (1/2015)

2/23/15 - - p 58

 59

First malware sample found by
Kaspersky (2/2015)

2/23/15 - - p 59

 60

NSA approach to backdooring
Disks

From public documents we know that:
● Compromise a computer
● A DLL loads a modified firmware image
● The firmware replaces the MBR by a
modified MBR

● Most likely then use this to infect the boot
chain
● Not very stealth !
● Could be detected by a TPM ?

 61

Snowden documents on “interdiction”

 62

What can we do about this ?

Good design
● Security Development Lifecycle (SDL)
● Hardening devices

Raise public awareness
● Evaluate the impact of compromises

Develop tools and techniques to improve security
evaluation at low cost

So what can we do about this ?

 64

2 main ways to analyze embedded systems:
 Static analysis
 Dynamic Analysis

We consider only black (or grey) box analysis
 Also realistic for manufacturers, audits,…

Performing analysis of embedded
systems

 65

AVATAR: A Framework for Dynamic Security Analysis of
Embedded Systems’ Firmwares

Presented at NDSS ‘14

Jonas Zaddach,

Luca Bruno, Aurélien Francillon, Davide
Balzarotti

 66

Problem:
● Unknown peripherals
● Emulating CPU only not sufficient
● Limited visibility with execution on hardware

● With a gdb stub, JTAG...

Advanced analysis impossible
● Tracing, Tainting, Symbolic execution

Dynamic analysis

 67

Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

 68

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Trace

1: x = 4
3: x = 4

1

32

4 5

Trace

1: x = 4

1

32

4 5

1

32

4 5

Trace

1: x = 4
3: x = 4
4: x = 6

Tools for security evaluation

Collecting an execution trace

 69

1

32

4 5

Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

Testcase A
x = 4

A

Testcase A
x = 4

Testcase B
x = 2

B

Testing with random input

 70

Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X=<input>
Y=0
Z=0

X
Y
Z

tainted

Y=X+Y
Z=23

Data flow tracking

 71

Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

1

32

4 5

X = σ

X ≤ 3
X > 3

X >
7

3 < X ≤
7

X = 2

X = 4 X = 9

Multipath exploration

 72

Tools for security evaluation

Techniques that are typically used on a PC
● Advanced debugging techniques

● Tracing
● Fuzzing
● Tainting
● Symbolic Execution

● Integrated tools
● IDA Pro
● GDB
● Eclipse

 73

Avatar

Avatar idea :
● Arbitration framework
● Emulate the firmware on the emulator

● Forward IO to deivce
● Python scripting of all tools (qemu, jtag, symbolic

execution…)
● A process, helps for reverse engineering at the

same time as automating many tasks and testing

● Open source, with examples:
http://s3.eurecom.fr/tools/avatar/

http://s3.eurecom.fr/tools/avatar/

 74

Avatar simplified principle

 75

Avatar simplified principle

 76

Avatar simplified principle

 77

Avatar simplified principle

 78

Avatar simplified principle

 79

Avatar simplified principle

 80

Avatar simplified principle

 81

Use cases

Analyzing the ROM
bootloader of an HDD

Finding bugs in a Zigbee
wireless sensor device

Analyzing the baseband
code of a GSM feature
phone

 82

Dynamic analysis is great, but
does not scale.

How can we analyze such
systems at a large scale ?

 83

 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure
Embedded Systems

 84

 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure
Embedded Systems

 85

 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure
Embedded Systems

 86

 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure
Embedded Systems

 87

 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure
Embedded Systems

 88

 Routers
 Printers
 VoIP
 Cars
 Drones

Many Examples of Insecure
Embedded Systems

Problem:
 Those are individual, manual, tedious efforts
 How to do this at large scale?

 89

 Heterogeneity of
◦Hardware, architectures, OSes, users, requirements,

security goals
 Manual analysis does not scale, it requires

◦Finding and downloading the firmwares
◦Unpacking and performing initial analysis
◦ (Re-)discovering the same or similar bugs in other

firmwares

The problem with large scale
analysis

 90

1.Collect a large number of firmware images
2.Perform broad but simple static analysis
3.Correlate across firmwares

Many advantages:
● No intrusive online testing, no devices involved
● Scalable
But also many challenges

Our approach

« A Large Scale Analysis of the Security of Embedded Firmwares »
Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide Balzarotti
USENIX Security 2015

 91

● Firmware identification (.exe/.ps/...)
● Firmware Unpacking
● Representative dataset
● Scalability, computational limits
● Results confirmation

Challenges

 92

Challenge:
Firmware Identification

Clearly a Firmware

 93

Challenge:
Firmware Identification

Clearly a Firmware Clearly not a Firmware

 94

Clearly a Firmware Clearly not a Firmware

Uncertain

Challenge:
Firmware Identification

 95

● E.g., upgrade by printing a PS document

Challenge:
Firmware Identification

 96

Challenge:
Unpacking & Custom Formats

● How to reliably unpack and learn formats?

● E.g., vendor provides a .ZIP 'firmware package'

– .ZIP→.EXE+.PS
● .EXE→self-extracting archive

– Extract more or not?
– Turns out to contain a printer driver inside

● .PS→ASCII85 stream→ELF file that could be:
– A complete embedded system software
– An executable performing the firmware upgrade
– A firmware patch

● Often, a firmware image→just 'data' binary blob

 97

Architecture

 98

Architecture

 99

Architecture

 100

Architecture

 101

 759 K total files collected

 172 K filtered files (firmware candidates)

 32 K firmwares analyzed

 26 K firmwares unpacked (fully or partially)

 1.7 M files after unpacking

Unpacking

Filter non firmware

Random selection

Unpack attempt

Files extraction

 102

OS in our dataset

63 %ARM, 7 % Mips,
86 % Linux 7 % VxWorks/Nucleus RTOS/Windows CE

 103

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

 104

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

 105

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

Firmware 2

Firmware 3

95%

99%

0%

 106

 Correlation via fuzzy-hashes (ssdeep, sdhash)
◦E.g., Vulnerability Propagation

Example: Correlation

Firmware 1

Firmware 2

Firmware 3

95%

99%

0%

 107

RSA Keys

 SSL keys correlation
vulnerability propagation

 108

RSA Keys

 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable
devices online

 109

RSA Keys

 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable
devices online
 Not all the same
brand

 110

RSA Keys

 SSL keys correlation
vulnerability propagation

 1 RSA private key:
30,000 vulnerable
devices online
 Not all the same
brand

 111

 Replacing wires by
wireless in a system
 Lack of security
 Anyone can control
the fireworks

 Fortunately firmware
updates possible and now
deployed

Another example of composition failure:
Fireworks!

Costin et al. ACM Wisec 2014

 112

www.firmware.RE (beta)

 113

 38 new vulnerabilities (CVE)

 Correlated them to 140 K vulnerable online
devices

 Affected 693 firmware files by at least one
vulnerability

See our Usenix Security 2014 paper

Results: Summary

 114

 Rather simple analysis so far

 We are now working on
● Doing smarter analysis on this dataset
● Improving the dataset

Next steps

Take away message

Few of the principles from Saltzer and
Schroeder (a.k.a. the basics):

● Economy of Mechanism (“KISS”)
● Fail-safe defaults
● Open design
● Separation of privilege
● Least privilege
● Psychological acceptability

Saltzer and Schroeder
(1975)

● Forget things like “It will never be attacked
because it is:
● Stripped, binary only
● Firmware is not on the Internet
● Hardware is not documented
● We disabled JTAG
● …

Wrong Assumptions

● Updates with old software (release/compilation
date)

● Default passwords
● SSL private keys
● SSH keys (authorized_keys)
● Debug access a.k.a. backdoors...
● Web vulnerabilities
● Building Images as root
● Packaging Outdated and Vulnerable Software

Frequently found problems in
firmware

● Plan for updates automated and secure
● Clean default passwords, keys
● Implement countermeasures (NX/Canaries/ASLR...)
● Secure boot, signed updates
● (contradictory) Please don't lock the user out!

● Obfuscating firmware
● Remove strings, strip symbols
● Make firmware hard to obtain (encrypted)
● Careful key management
● Make it hard to analyze hardware

Defending / obfuscation (by far
not an exhaustive list!)

 120

Security is hard
● Costs money, Time, manpower

Features are selling points
● More Features, more attack surface and less security

Less features, higher cost, latter
● market failure ?

Long term v.s. short term thinking

Security Trade-off

Today?

Security
Cost
Features
Convenience
…

Tomorrow?

 121

A lot of poorly secured devices produced
● But bad cases more visible

Security is hard and expensive, we need
● Public/customer awareness
● Security Standards?
● Independent security audit
● Automated Firmware updates!

Diverse and powerful adversaries
No such thing as total security

● But there should be a minimal level of security

Conclusion

 122

References

● Bunnie Huang blog: hardware attack
● Hacking the PIC 18F1320
http://www.bunniestudios.com/blog/?page_i
d=40

● Hacking the Xbox An introduction to
Reverse engineering (free ebook!)

● http://travisgoodspeed.blogspot.com
● http://siliconpr0n.org/
● http://zeptobars.ru/
● Sergei Skorobogatov work
http://www.cl.cam.ac.uk/~sps32/

http://www.bunniestudios.com/blog/?page_id=40
http://www.bunniestudios.com/blog/?page_id=40
http://travisgoodspeed.blogspot.com/
http://siliconpr0n.org/
http://zeptobars.ru/
http://www.cl.cam.ac.uk/~sps32/

 123

References
● Oliver Kömmerling, Markus G. Kuhn: Design Principles for

Tamper-Resistant Smartcard Processors, Proceedings of
the USENIX Workshop on Smartcard Technology, 1999

● Printed Circuit Board Deconstruction Techniques, Joe
Grand, WOOT '14

● Firmware unpacking tools BAT and Binwalk

● Talk about hardware attacks on secuer chips “Hardware
reverse engineering tools” Olivier Thomas, Recon 2013
https://www.youtube.com/watch?v=o77GTR8RovM

https://www.youtube.com/watch?v=o77GTR8RovM

 124

Some of our projects

Avatar Project :
● http://s3.eurecom.fr/tools/avatar/
Firmware.re:
● http://www.firmware.re/

Our publications can be found here :
http://www.s3.eurecom.fr/publications.html

http://s3.eurecom.fr/tools/avatar/
http://www.firmware.re/
http://www.s3.eurecom.fr/publications.html

Questions ?

Some of the people working on this:

Jonas Zadach

Andrei Costin Davide Balzarotti

Luca Bruno

